39 research outputs found

    Detectable Sequential Specifications for Recoverable Shared Objects

    Get PDF

    Robust Shared Objects for Non-Volatile Main Memory

    Get PDF
    Research in concurrent in-memory data structures has focused almost exclusively on models where processes are either reliable, or may fail by crashing permanently. The case where processes may recover from failures has received little attention because recovery from conventional volatile memory is impossible in the event of a system crash, during which both the state of main memory and the private states of processes are lost. Future hardware architectures are likely to include various forms of non-volatile random access memory (NVRAM), creating new opportunities to design robust main memory data structures that can recover from system crashes. In this paper we advance the theoretical foundations of such data structures in two ways. First, we review several known variations of Herlihy and Wing\u27s linearizability property that were proposed in the context of message passing systems but also apply in our NVRAM-based model, we discuss the limitations of these properties with respect to our specific goals, and we propose an alternative correctness condition called recoverable linearizability. Second, we discuss techniques for implementing shared objects that satisfy such properties with a focus on wait-free implementations. Specifically, we demonstrate how to achieve different variations of linearizability in our model by transforming two classic wait-free constructions

    Toward Linearizability Testing for Multi-Word Persistent Synchronization Primitives

    Get PDF
    Persistent memory makes it possible to recover in-memory data structures following a failure instead of rebuilding them from state saved in slow secondary storage. Implementing such recoverable data structures correctly is challenging as their underlying algorithms must deal with both parallelism and failures, which makes them especially susceptible to programming errors. Traditional proofs of correctness should therefore be combined with other methods, such as model checking or software testing, to minimize the likelihood of uncaught defects. This research focuses specifically on the algorithmic principles of software testing, particularly linearizability analysis, for multi-word persistent synchronization primitives such as conditional swap operations. We describe an efficient decision procedure for linearizability in this context, and discuss its practical applications in detecting previously-unknown bugs in implementations of multi-word persistent primitives
    corecore